Ingyenes szállítás a Packetával, 19 990 Ft feletti vásárlás esetén
Posta 1 795 Ft DPD 1 995 Ft PostaPont / Csomagautomata 1 690 Ft Postán 1 690 Ft GLS futár 1 590 Ft Packeta 990 Ft GLS pont 1 390 Ft

Machine Learning Models and Algorithms for Big Data Classification

Nyelv AngolAngol
Könyv Kemény kötésű
Könyv Machine Learning Models and Algorithms for Big Data Classification Shan Suthaharan
Libristo kód: 09479801
Kiadó Springer-Verlag New York Inc., október 2015
This book presents machine learning models and algorithms to address big data classification problem... Teljes leírás
? points 467 b
73 942 Ft
Beszállítói készleten alacsony példányszámban Küldés 10-15 napon belül

30 nap a termék visszaküldésére


Ezt is ajánljuk


Computational Statistics Handbook with MATLAB Wendy L. Martinez / Kemény kötésű
common.buy 55 445 Ft
Waru Hashida Yukari / Puha kötésű
common.buy 5 587 Ft
Explaining Social Behavior Jon Elster / Kemény kötésű
common.buy 53 419 Ft
Trickster Magic Kirsten Riddle / Puha kötésű
common.buy 8 514 Ft
Primordial Leadership Lawrence D. Duckworth / Puha kötésű
common.buy 6 726 Ft
Rechtsentwicklungen in Berlin Friedrich Ebel / Kemény kötésű
common.buy 69 480 Ft
Rules of Love and Law Jeff Russell / Kemény kötésű
common.buy 17 423 Ft

This book presents machine learning models and algorithms to address big data classification problems. Existing machine learning techniques like the decision tree (a hierarchical approach), random forest (an ensemble hierarchical approach), and deep learning (a layered approach) are highly suitable for the system that can handle such problems. This book helps readers, especially students and newcomers to the field of big data and machine learning, to gain a quick understanding of the techniques and technologies; therefore, the theory, examples, and programs (Matlab and R) presented in this book have been simplified, hardcoded, repeated, or spaced for improvements. They provide vehicles to test and understand the complicated concepts of various topics in the field. It is expected that the readers adopt these programs to experiment with the examples, and then modify or write their own programs toward advancing their knowledge for solving more complex and challenging problems.§§The presentation format of this book focuses on simplicity, readability, and dependability so that both undergraduate and graduate students as well as new researchers, developers, and practitioners in this field can easily trust and grasp the concepts, and learn them effectively. It has been written to reduce the mathematical complexity and help the vast majority of readers to understand the topics and get interested in the field. This book consists of four parts, with the total of 14 chapters. The first part mainly focuses on the topics that are needed to help analyze and understand data and big data. The second part covers the topics that can explain the systems required for processing big data. The third part presents the topics required to understand and select machine learning techniques to classify big data. Finally, the fourth part concentrates on the topics that explain the scaling-up machine learning, an important solution for modern big data problems.§

Ajándékozza oda ezt a könyvet még ma
Nagyon egyszerű
1 Tegye a kosárba könyvet, és válassza ki a kiszállítás ajándékként opciót 2 Rögtön küldjük Önnek az utalványt 3 A könyv megérkezik a megajándékozott címére

Belépés

Bejelentkezés a saját fiókba. Még nincs Libristo fiókja? Hozza létre most!

 
kötelező
kötelező

Nincs fiókja? Szerezze meg a Libristo fiók kedvezményeit!

A Libristo fióknak köszönhetően mindent a felügyelete alatt tarthat.

Libristo fiók létrehozása